Names of the Week
Fact of the Week
More people are allergic to cows milk than any other food.  More

Top 1000 Most Popular U.S. Baby Names Of 1892

* If Year is set to 'All', Compare To may only be set to 2017 and Order By defaults to Number High to Low.
** If Compare To year is not Year-1, Top may only be set to 100.

 

Page  of  20
1892 Popular Names U.S. - Top 1000 Baby Names
  Change from
1891
  Change from
1891
Girls Number
of Girls
% Rank Number Boys Number
of Boys
% Rank Number
1 Mary 13,172 5.856 0 1,469 1 John 9,039 6.876 0 1,359
2 Anna 5,542 2.464 0 443 2 William 7,782 5.920 0 1,019
3 Elizabeth 3,461 1.539 1 402 3 James 5,398 4.106 0 882
4 Margaret 3,435 1.527 -1 370 4 George 4,760 3.621 0 829
5 Ruth 3,290 1.463 14 1,433 5 Charles 4,319 3.286 0 679
6 Florence 3,154 1.402 0 439 6 Frank 3,150 2.396 0 498
7 Emma 3,128 1.391 -2 244 7 Joseph 3,064 2.331 0 492
8 Ethel 3,035 1.349 -1 346 8 Robert 2,710 2.062 0 470
9 Helen 2,936 1.305 0 519 9 Harry 2,460 1.871 0 328
10 Clara 2,661 1.183 1 301 10 Henry 2,452 1.865 0 403
11 Bertha 2,617 1.164 -1 245 11 Edward 2,416 1.838 0 427
12 Minnie 2,609 1.160 -4 181 12 Thomas 2,413 1.836 0 431
13 Bessie 2,541 1.130 -1 218 13 Walter 2,229 1.696 0 561
14 Alice 2,373 1.055 2 358 14 Arthur 1,768 1.345 0 254
15 Annie 2,348 1.044 -2 252 15 Fred 1,628 1.238 0 266
16 Grace 2,299 1.022 -2 211 16 Albert 1,500 1.141 0 293
17 Ida 2,259 1.004 0 257 17 Clarence 1,276 0.971 0 269
18 Edna 2,218 0.986 0 255 18 Roy 1,048 0.797 0 210
19 Mabel 2,170 0.965 -4 141 19 Willie 948 0.721 2 209
20 Lillian 2,154 0.958 0 342 20 Samuel 902 0.686 0 149
21 Marie 2,066 0.919 7 470 21 Earl 888 0.676 4 214
22 Rose 2,023 0.899 0 327 22 Louis 865 0.658 -3 79
23 Gertrude 1,924 0.855 3 279 23 Joe 819 0.623 6 235
24 Martha 1,915 0.851 -3 171 24 David 813 0.618 2 140
25 Hazel 1,897 0.843 7 450 25 Carl 808 0.615 -1 133
26 Pearl 1,831 0.814 1 226 26 Ernest 805 0.612 -4 90
27 Ella 1,808 0.804 -4 123 27 Richard 802 0.610 0 193
28 Sarah 1,798 0.799 -4 129 28 Charlie 761 0.579 -5 54
29 Laura 1,744 0.775 1 235 29 Paul 747 0.568 2 183
30 Nellie 1,738 0.773 -5 91 30 Ralph 725 0.552 -2 138
31 Frances 1,670 0.743 3 273 31 Raymond 681 0.518 -1 106
32 Myrtle 1,666 0.741 -1 208 32 Andrew 637 0.485 1 116
33 Edith 1,625 0.723 -4 116 33 Oscar 634 0.482 -1 83
34 Eva 1,611 0.716 -1 199 34 Will 607 0.462 0 87
35 Carrie 1,588 0.706 1 246 35 Jesse 602 0.458 0 83
36 Lillie 1,503 0.668 3 256 36 Elmer 592 0.450 0 84
37 Elsie 1,489 0.662 1 186 37 Harold 583 0.444 5 164
38 Louise 1,446 0.643 -1 113 38 Sam 551 0.419 5 133
39 Cora 1,419 0.631 -4 76 39 Howard 548 0.417 1 63
40 Hattie 1,363 0.606 2 144 40 Alfred 542 0.412 -1 43
41 Julia 1,360 0.605 2 160 41 Daniel 533 0.405 -4 28
42 Catherine 1,333 0.593 -1 114 42 Benjamin 525 0.399 -1 64
43 Agnes 1,328 0.590 4 203 43 Herbert 513 0.390 -5 12
44 Mattie 1,303 0.579 2 138 44 Lawrence 468 0.356 2 79
45 Maude 1,270 0.565 -1 82 45 Peter 465 0.354 0 69
46 Jessie 1,246 0.554 2 127 46 Lee 460 0.350 6 118
47 Lena 1,234 0.549 -2 60 47 Grover 454 0.345 52 291
48 Jennie 1,212 0.539 -8 -26 48 Frederick 453 0.345 -4 41
49 Josephine 1,210 0.538 0 179 49 Leo 444 0.338 2 91
50 Ada 1,134 0.504 1 159 50 Francis 429 0.326 4 96

 

United States name popularity data is provided by the Social Security Administration and is based on Social Security card applications.

Data for a given year is not made available until well into the next year.

Data reflects what was recorded and has not been edited for errors, so for example the gender associated with a name may be incorrect.

The more babies that are given a particular name, the higher the popularity ranking. If multiple names have the same usage, the tie is broken by assigning popularity rank in alphabetical order. Therefore in the case of names with fewer occurrences, names with the same number of occurrences may have vastly different rankings because they will be interranked alphabetically.

To safeguard privacy, the SSA does not include names with less than 5 occurrences.

Please note, we update the data each May when the SSA releases new figures. All data changes at that time, including previous years, which will change minutely based on new information.