Names of the Week
Fact of the Week
More people are allergic to cows milk than any other food.  More

Top 1000 Most Popular U.S. Baby Names Of 1908

* If Year is set to 'All', Compare To may only be set to 2017 and Order By defaults to Number High to Low.
** If Compare To year is not Year-1, Top may only be set to 100.

 

Page  of  20
1908 Popular Names U.S. - Top 1000 Baby Names
  Change from
1907
  Change from
1907
Girls Number
of Girls
% Rank Number Boys Number
of Boys
% Rank Number
1 Mary 18,665 5.265 0 1,085 1 John 9,342 5.615 0 359
2 Helen 8,439 2.380 0 860 2 William 7,528 4.525 0 624
3 Margaret 6,976 1.968 0 263 3 James 7,012 4.215 0 305
4 Ruth 6,180 1.743 1 607 4 George 4,584 2.755 0 139
5 Anna 5,860 1.653 -1 285 5 Robert 4,219 2.536 0 199
6 Dorothy 5,703 1.609 0 736 6 Joseph 4,162 2.502 1 318
7 Elizabeth 4,904 1.383 0 280 7 Charles 3,929 2.362 -1 45
8 Mildred 4,624 1.304 0 347 8 Frank 3,146 1.891 0 203
9 Alice 4,270 1.204 0 163 9 Edward 2,707 1.627 0 131
10 Marie 4,076 1.150 0 196 10 Thomas 2,301 1.383 1 126
11 Florence 3,883 1.095 0 133 11 Henry 2,283 1.372 -1 80
12 Ethel 3,786 1.068 0 88 12 Walter 2,192 1.318 0 97
13 Lillian 3,634 1.025 0 92 13 Willie 1,964 1.181 0 -4
14 Frances 3,593 1.013 2 294 14 Harry 1,934 1.162 0 121
15 Gladys 3,580 1.010 -1 277 15 Albert 1,642 0.987 0 6
16 Rose 3,382 0.954 1 266 16 Arthur 1,601 0.962 0 48
17 Edna 3,365 0.949 -2 64 17 Harold 1,542 0.927 0 90
18 Louise 2,937 0.828 3 318 18 Paul 1,478 0.888 2 120
19 Grace 2,901 0.818 1 154 19 Clarence 1,428 0.858 -1 39
20 Evelyn 2,857 0.806 -2 -178 20 Fred 1,381 0.830 -1 10
21 Annie 2,820 0.795 -2 -71 21 Raymond 1,381 0.830 0 91
22 Catherine 2,750 0.776 3 293 22 Louis 1,317 0.792 3 206
23 Irene 2,732 0.771 -1 115 23 Richard 1,244 0.748 -1 9
24 Hazel 2,698 0.761 -1 168 24 Joe 1,209 0.727 -1 32
25 Gertrude 2,562 0.723 -1 63 25 Ralph 1,138 0.684 4 140
26 Thelma 2,526 0.712 2 187 26 Roy 1,097 0.659 -2 -31
27 Edith 2,410 0.680 5 233 27 Jack 1,086 0.653 -1 67
28 Josephine 2,389 0.674 5 233 28 Howard 1,078 0.648 5 203
29 Bertha 2,384 0.672 -3 21 29 Carl 1,074 0.646 -2 56
30 Emma 2,357 0.665 -3 1 30 David 1,016 0.611 1 71
31 Clara 2,352 0.663 -2 33 31 Ernest 1,000 0.601 -1 22
32 Martha 2,324 0.656 -1 50 32 Earl 999 0.600 -4 -7
33 Ruby 2,229 0.629 1 116 33 Samuel 960 0.577 -1 68
34 Bessie 2,201 0.621 -4 -110 34 Francis 853 0.513 3 136
35 Virginia 2,195 0.619 6 302 35 Lawrence 815 0.490 -1 14
36 Esther 2,187 0.617 1 125 36 Herbert 759 0.456 3 49
37 Mabel 2,096 0.591 -1 27 37 Charlie 740 0.445 -2 -53
38 Lucille 2,080 0.587 7 227 38 Alfred 739 0.444 -2 1
39 Pearl 2,075 0.585 -4 -33 39 Andrew 722 0.434 1 14
40 Beatrice 1,997 0.563 4 139 40 Kenneth 692 0.416 7 103
41 Elsie 1,983 0.559 2 111 41 Anthony 690 0.415 5 97
42 Viola 1,964 0.554 5 159 42 Elmer 689 0.414 3 73
43 Ida 1,952 0.551 -5 -28 43 Eugene 689 0.414 -2 -2
44 Myrtle 1,952 0.551 -5 23 44 Michael 689 0.414 4 103
45 Agnes 1,934 0.546 1 105 45 Donald 664 0.399 -1 48
46 Eva 1,930 0.544 -4 46 46 Sam 644 0.387 -3 13
47 Minnie 1,817 0.513 -7 -90 47 Theodore 643 0.386 -9 -69
48 Sarah 1,814 0.512 0 15 48 Leonard 614 0.369 3 67
49 Nellie 1,757 0.496 1 86 49 Leo 584 0.351 -7 -67
50 Julia 1,749 0.493 -1 69 50 Herman 562 0.338 -1 0

 

United States name popularity data is provided by the Social Security Administration and is based on Social Security card applications.

Data for a given year is not made available until well into the next year.

Data reflects what was recorded and has not been edited for errors, so for example the gender associated with a name may be incorrect.

The more babies that are given a particular name, the higher the popularity ranking. If multiple names have the same usage, the tie is broken by assigning popularity rank in alphabetical order. Therefore in the case of names with fewer occurrences, names with the same number of occurrences may have vastly different rankings because they will be interranked alphabetically.

To safeguard privacy, the SSA does not include names with less than 5 occurrences.

Please note, we update the data each May when the SSA releases new figures. All data changes at that time, including previous years, which will change minutely based on new information.